Alternative parameterizations of Metric Dimension
نویسندگان
چکیده
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملAlternative Parameterizations for Cluster Editing
Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observe...
متن کاملQuasisymmetric parameterizations of two-dimensional metric planes
The classical uniformization theorem states that any simply connected Riemann surface is conformally equivalent to the disk, the plane, or the sphere, each equipped with a standard conformal structure. We give a similar uniformization for Ahlfors 2regular, linearly locally connected metric planes; instead of conformal equivalence, we are concerned with quasisymmetric equivalence.
متن کاملAlternative Parameterizations of Product-Form Queueing Networks
product-form queueing networks are considered which allow for conceptual job initiations and terminations (such as a central server model). It is shown that the product-form expression can be parameterized with either mean job resource usages, total server busy times, or overall server utilizations. Measurement and computational efficiencies resulting from these alternative parameterizations ar...
متن کاملAdjacency metric dimension of the 2-absorbing ideals graph
Let Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2020
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2019.01.028